[ad_1]
Su H, Feng J, Lv J, Liu Q, Nan F, Liu X, et al. Molecular mechanism of lipid accumulation and metabolism of oleaginous chlorococcum sphacosum gd from soil underneath salt stress. Int J Mol Sci. 2021;22:1304.
Da Ros PC, Silva CS, Silva-Stenico ME, Fiore MF, De Castro HF. Evaluation of chemical and physico-chemical properties of cyanobacterial lipids for biodiesel manufacturing. Mar Medication. 2013;11:2365–81.
Giri DD, Dwivedi H, Khalaf DAA, Pal DB, Otaibi AA, Areeshi MY, et al. Sustainable manufacturing of algae-bacteria granular consortia based mostly organic hydrogen: new insights. Bioresour Technol. 2022;352: 127036.
Harahap BM, Ahring BK. Acetate manufacturing from syngas produced from lignocellulosic biomass supplies together with gaseous fermentation of the syngas: a evaluation. Microorganisms. 2023;11:995.
Bayona-Morcillo PJ, Gomez-Serrano C, Gonzalez-Lopez CV, Massa D, Jimenez-Becker S. Impact of the applying of hydrolysate of chlorella vulgaris extracted by completely different methods on the expansion of pelargonium x hortorum. Crops. 2022;11:191.
Tsvetanova F, Yankov D. Bioactive compounds from pink microalgae with therapeutic and dietary worth. Microorganisms. 2022;10:2290.
Mallick N, Bagchi SK, Koley S, Singh AK. Progress and challenges in microalgal biodiesel manufacturing. Entrance Microbiol. 2016;7:1019.
Venkata Subhash G, Rajvanshi M, Navish Kumar B, Govindachary S, Prasad V, Dasgupta S. Carbon streaming in microalgae: extraction and evaluation strategies for top worth compounds. Bioresour Technol. 2017;244:1304–16.
Hlavova M, Turoczy Z, Bisova Okay. Bettering microalgae for biotechnology–from genetics to artificial biology. Biotechnol Adv. 2015;33:1194–203.
Kurita T, Moroi Okay, Iwai M, Okazaki Okay, Shimizu S, Nomura S, et al. Environment friendly and multiplexable genome modifying utilizing platinum talens in oleaginous microalga, nannochloropsis oceanica nies-2145. Genes Cells. 2020;25:695–702.
Wang JY, Doudna JA. Crispr expertise: a decade of genome modifying is barely the start. Science. 2023;379:eadd8643.
Coelho MA, De Braekeleer E, Firth M, Bista M, Lukasiak S, Cuomo ME, et al. Crispr guard protects off-target websites from cas9 nuclease exercise utilizing quick information rnas. Nat Commun. 2020;11:4132.
Cheng H, Zhang F, Ding Y. Crispr/cas9 supply system engineering for genome modifying in therapeutic purposes. Pharmaceutics. 2021;13:1649.
Feng S, Wang Z, Li A, Xie X, Liu J, Li S, et al. Methods for high-efficiency mutation utilizing the crispr/cas system. Entrance Cell Dev Biol. 2021;9: 803252.
Chaudhary R, Nawaz Okay, Khan AK, Hano C, Abbasi BH, Anjum S. An outline of the algae-mediated biosynthesis of nanoparticles and their biomedical purposes. Biomolecules. 2020;10:1498.
Gerken HG, Donohoe B, Knoshaug EP. Enzymatic cell wall degradation of chlorella vulgaris and different microalgae for biofuels manufacturing. Planta. 2013;237:239–53.
Hao X, Luo L, Jouhet J, Rebeille F, Marechal E, Hu H, et al. Enhanced triacylglycerol manufacturing within the diatom phaeodactylum tricornutum by inactivation of a hotdog-fold thioesterase gene utilizing talen-based focused mutagenesis. Biotechnol Biofuels. 2018;11:312.
Sizova I, Greiner A, Awasthi M, Kateriya S, Hegemann P. Nuclear gene concentrating on in chlamydomonas utilizing engineered zinc-finger nucleases. Plant J. 2013;73:873–82.
Vazquez-Dominguez I, Garanto A, Collin RWJ. Molecular therapies for inherited retinal diseases-current standing, alternatives and challenges. Genes. 2019;10:654.
Ghribi M, Nouemssi SB, Meddeb-Mouelhi F, Desgagne-Penix I. Genome modifying by crispr-cas: a sport change within the genetic manipulation of chlamydomonas. Life. 2020;10:295.
Sanchez-Baltasar R, Garcia-Torralba A, Nieto-Romero V, Web page A, Molinos-Vicente A, Lopez-Manzaneda S, et al. Environment friendly and quick era of related illness mouse fashions by in vitro and in vivo gene modifying of zygotes. CRISPR J. 2022;5:422–34.
Naduthodi MIS, Sudfeld C, Avitzigiannis EK, Trevisan N, Van Lith E, Alcaide Sancho J, et al. Complete genome engineering toolbox for microalgae nannochloropsis oceanica based mostly on crispr-cas methods. ACS Synth Biol. 2021;10:3369–78.
Nymark M, Sharma AK, Sparstad T, Bones AM, Winge P. A crispr/cas9 system tailored for gene modifying in marine algae. Sci Rep. 2016;6:24951.
Hopes A, Nekrasov V, Kamoun S, Mock T. Modifying of the urease gene by crispr-cas within the diatom thalassiosira pseudonana. Plant Strategies. 2016;12:49.
Kim J, Chang KS, Lee S, Jin E. Institution of a genome modifying instrument utilizing crispr-cas9 in chlorella vulgaris utex395. Int J Mol Sci. 2021;22:480.
Farasat I, Kushwaha M, Collens J, Easterbrook M, Guido M, Salis HM. Environment friendly search, mapping, and optimization of multi-protein genetic methods in various micro organism. Mol Syst Biol. 2014;10:731.
Shin SE, Lim JM, Koh HG, Kim EK, Kang NK, Jeon S, et al. Crispr/cas9-induced knockout and knock-in mutations in chlamydomonas reinhardtii. Sci Rep. 2016;6:27810.
Baek Okay, Kim DH, Jeong J, Sim SJ, Melis A, Kim JS, et al. DNA-free two-gene knockout in chlamydomonas reinhardtii by way of crispr-cas9 ribonucleoproteins. Sci Rep. 2016;6:30620.
Kao PH, Ng IS. Crispri mediated phosphoenolpyruvate carboxylase regulation to boost the manufacturing of lipid in chlamydomonas reinhardtii. Bioresour Technol. 2017;245:1527–37.
Baek Okay, Yu J, Jeong J, Sim SJ, Bae S, Jin E. Photoautotrophic manufacturing of macular pigment in a chlamydomonas reinhardtii pressure generated by utilizing DNA-free crispr-cas9 rnp-mediated mutagenesis. Biotechnol Bioeng. 2018;115:719–28.
Ferenczi A, Chew YP, Kroll E, Von Koppenfels C, Hudson A, Molnar A. Mechanistic and genetic foundation of single-strand templated restore at cas12a-induced DNA breaks in chlamydomonas reinhardtii. Nat Commun. 2021;12:6751.
Kim J, Lee S, Baek Okay, Jin E. Web site-specific gene knock-out and on-site heterologous gene overexpression in chlamydomonas reinhardtii by way of a crispr-cas9-mediated knock-in technique. Entrance Plant Sci. 2020;11:306.
Li H, Shen CR, Huang CH, Sung LY, Wu MY, Hu YC. Crispr-cas9 for the genome engineering of cyanobacteria and succinate manufacturing. Metab Eng. 2016;38:293–302.
Wendt KE, Ungerer J, Cobb RE, Zhao H, Pakrasi HB. Crispr/cas9 mediated focused mutagenesis of the quick rising cyanobacterium synechococcus elongatus utex 2973. Microb Cell Truth. 2016;15:115.
Gordon GC, Korosh TC, Cameron JC, Markley AL, Begemann MB, Pfleger BF. Crispr interference as a titratable, trans-acting regulatory instrument for metabolic engineering within the cyanobacterium Synechococcus sp. Pressure pcc 7002. Metab Eng. 2016;38:170–9.
Huang CH, Shen CR, Li H, Sung LY, Wu MY, Hu YC. Crispr interference (crispri) for gene regulation and succinate manufacturing in cyanobacterium s. Elongatus pcc 7942. Microb Cell Truth. 2016;15:196.
Yao L, Cengic I, Anfelt J, Hudson EP. A number of gene repression in cyanobacteria utilizing crispri. ACS Synth Biol. 2016;5:207–12.
Poliner E, Takeuchi T, Du ZY, Benning C, Farre EM. Nontransgenic marker-free gene disruption by an episomal crispr system within the oleaginous microalga, nannochloropsis oceanica ccmp1779. ACS Synth Biol. 2018;7:962–8.
Wang Q, Lu Y, Xin Y, Wei L, Huang S, Xu J. Genome modifying of mannequin oleaginous microalgae nannochloropsis spp. By crispr/cas9. Plant J. 2016;88:1071–81.
Liu X, Zhang D, Zhang J, Chen Y, Liu X, Fan C, et al. Overexpression of the transcription issue atlec1 considerably improved the lipid content material of chlorella ellipsoidea. Entrance Bioeng Biotechnol. 2021;9: 626162.
Vingiani GM, De Luca P, Ianora A, Dobson ADW, Lauritano C. Microalgal enzymes with biotechnological purposes. Mar Medication. 2019;17:459.
Wang L, Yang L, Wen X, Chen Z, Liang Q, Li J, et al. Speedy and excessive effectivity transformation of chlamydomonas reinhardtii by square-wave electroporation. Biosci Rep. 2019;39:BSR20181210.
Nouemssi SB, Ghribi M, Beauchemin R, Meddeb-Mouelhi F, Germain H, Desgagne-Penix I. Speedy and environment friendly colony-pcr for top throughput screening of genetically reworked chlamydomonas reinhardtii. Life. 2020;10:186.
Moosburner MA, Gholami P, Mccarthy JK, Tan M, Bielinski VA, Allen AE. Multiplexed knockouts within the mannequin diatom phaeodactylum by episomal supply of a selectable cas9. Entrance Microbiol. 2020;11:5.
Bolanos-Martinez OC, Mahendran G, Rosales-Mendoza S, Vimolmangkang S. Present standing and perspective on using viral-based vectors in eukaryotic microalgae. Mar Medication. 2022;20:434.
Brown LE, Sprecher SL, Keller LR. Introduction of exogenous DNA into chlamydomonas reinhardtii by electroporation. Mol Cell Biol. 1991;11:2328–32.
Lee S, Kim YY, Ahn HJ. Systemic supply of crispr/cas9 to hepatic tumors for most cancers therapy utilizing altered tropism of lentiviral vector. Biomaterials. 2021;272: 120793.
Yao X, Lyu P, Yoo Okay, Yadav MK, Singh R, Atala A, et al. Engineered extracellular vesicles as versatile ribonucleoprotein supply automobiles for environment friendly and protected crispr genome modifying. J Extracell Vesicles. 2021;10: e12076.
Ramakrishna S, Kwaku Dad AB, Beloor J, Gopalappa R, Lee SK, Kim H. Gene disruption by cell-penetrating peptide-mediated supply of cas9 protein and information rna. Genome Res. 2014;24:1020–7.
Ren X, Wei C, Yan Q, Shan X, Wu M, Zhao X, et al. Optimization of a novel lipid extraction course of from microalgae. Sci Rep. 2021;11:20221.
Manghwar H, Li B, Ding X, Hussain A, Lindsey Okay, Zhang X, et al. Crispr/cas methods in genome modifying: Methodologies and instruments for sgrna design, off-target analysis, and methods to mitigate off-target results. Adv Sci. 2020;7:1902312.
Tong S, Moyo B, Lee CM, Leong Okay, Bao G. Engineered supplies for in vivo supply of genome-editing equipment. Nat Rev Mater. 2019;4:726–37.
Shivram H, Cress BF, Knott GJ, Doudna JA. Controlling and enhancing crispr methods. Nat Chem Biol. 2021;17:10–9.
Liu R, Liang L, Freed EF, Gill RT. Directed evolution of crispr/cas methods for exact gene modifying. Tendencies Biotechnol. 2021;39:262–73.
Kaczmarek JC, Kowalski PS, Anderson DG. Advances within the supply of rna therapeutics: from idea to scientific actuality. Genome Med. 2017;9:60.
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug supply. Nat Rev Drug Discov. 2021;20:101–24.
Hatit MZC, Lokugamage MP, Dobrowolski CN, Paunovska Okay, Ni H, Zhao Okay, et al. Species-dependent in vivo mrna supply and mobile responses to nanoparticles. Nat Nanotechnol. 2022;17:310–8.
Zhang X, Zhang H, Gu J, Zhang J, Shi H, Qian H, et al. Engineered extracellular vesicles for most cancers remedy. Adv Mater. 2021;33: e2005709.
Wang D, Zhang F, Gao G. Crispr-based therapeutic genome modifying: methods and in vivo supply by aav vectors. Cell. 2020;181:136–50.
Wilbie D, Walther J, Mastrobattista E. Supply elements of crispr/cas for in vivo genome modifying. Acc Chem Res. 2019;52:1555–64.
Yu W, Mookherjee S, Chaitankar V, Hiriyanna S, Kim JW, Brooks M, et al. Nrl knockdown by aav-delivered crispr/cas9 prevents retinal degeneration in mice. Nat Commun. 2017;8:14716.
Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, et al. Technology of gene-modified cynomolgus monkey by way of cas9/rna-mediated gene concentrating on in one-cell embryos. Cell. 2014;156:836–43.
Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, et al. Crispr-mediated direct mutation of most cancers genes within the mouse liver. Nature. 2014;514:380–4.
Yan Y, Zhu X, Yu Y, Li C, Zhang Z, Wang F. Nanotechnology methods for plant genetic engineering. Adv Mater. 2021;24:e2106945.
Chaverra-Rodriguez D, Macias VM, Hughes GL, Pujhari S, Suzuki Y, Peterson DR, et al. Focused supply of crispr-cas9 ribonucleoprotein into arthropod ovaries for heritable germline gene modifying. Nat Commun. 2018;9:3008.
Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, et al. Genome modifying with cas9 in grownup mice corrects a illness mutation and phenotype. Nat Biotechnol. 2014;32:551–3.
Pu Y, Yin H, Dong C, Xiang H, Wu W, Zhou B, et al. Sono-controllable and ros-sensitive crispr-cas9 genome modifying for augmented/synergistic ultrasound tumor nanotherapy. Adv Mater. 2021;33: e2104641.
Wang HX, Li M, Lee CM, Chakraborty S, Kim HW, Bao G, et al. Crispr/cas9-based genome modifying for illness modeling and remedy: Challenges and alternatives for nonviral supply. Chem Rev. 2017;117:9874–906.
Seki A, Rutz S. Optimized rnp transfection for extremely environment friendly crispr/cas9-mediated gene knockout in major t cells. J Exp Med. 2018;215:985–97.
Fajrial AK, He QQ, Wirusanti NI, Slansky JE, Ding X. A evaluation of rising bodily transfection strategies for crispr/cas9-mediated gene modifying. Theranostics. 2020;10:5532–49.
Track X, Liu C, Wang N, Huang H, He S, Gong C, et al. Supply of crispr/cas methods for most cancers gene remedy and immunotherapy. Adv Drug Deliv Rev. 2021;168:158–80.
Heckl D, Kowalczyk MS, Yudovich D, Belizaire R, Puram RV, Mcconkey ME, et al. Technology of mouse fashions of myeloid malignancy with combinatorial genetic lesions utilizing crispr-cas9 genome modifying. Nat Biotechnol. 2014;32:941–6.
Russell S, Bennett J, Wellman JA, Chung DC, Yu ZF, Tillman A, et al. Efficacy and security of voretigene neparvovec (aav2-hrpe65v2) in sufferers with rpe65-mediated inherited retinal dystrophy: a randomised, managed, open-label, part 3 trial. Lancet. 2017;390:849–60.
Naldini L. Gene remedy returns to centre stage. Nature. 2015;526:351–60.
Shirley JL, De Jong YP, Terhorst C, Herzog RW. Immune responses to viral gene remedy vectors. Mol Ther. 2020;28:709–22.
Baum C, Kustikova O, Modlich U, Li Z, Fehse B. Mutagenesis and oncogenesis by chromosomal insertion of gene switch vectors. Hum Gene Ther. 2006;17:253–63.
Thomas CE, Ehrhardt A, Kay MA. Progress and issues with using viral vectors for gene remedy. Nat Rev Genet. 2003;4:346–58.
Chen F, Alphonse M, Liu Q. Methods for nonviral nanoparticle-based supply of crispr/cas9 therapeutics. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12: e1609.
Yin H, Track CQ, Dorkin JR, Zhu LJ, Li Y, Wu Q, et al. Therapeutic genome modifying by mixed viral and non-viral supply of crispr system parts in vivo. Nat Biotechnol. 2016;34:328–33.
Glass Z, Lee M, Li Y, Xu Q. Engineering the supply system for crispr-based genome modifying. Tendencies Biotechnol. 2018;36:173–85.
Liu C, Zhang L, Liu H, Cheng Okay. Supply methods of the crispr-cas9 gene-editing system for therapeutic purposes. J Management Launch. 2017;266:17–26.
Li L, Hu S, Chen X. Non-viral supply methods for crispr/cas9-based genome modifying: challenges and alternatives. Biomaterials. 2018;171:207–18.
Canatella PJ, Karr JF, Petros JA, Prausnitz MR. Quantitative research of electroporation-mediated molecular uptake and cell viability. Biophys J. 2001;80:755–64.
Bak RO, Dever DP, Reinisch A, Cruz Hernandez D, Majeti R, Porteus MH. Multiplexed genetic engineering of human hematopoietic stem and progenitor cells utilizing crispr/cas9 and aav6. Elife. 2017;6:e27873.
Li L, He ZY, Wei XW, Gao GP, Wei YQ. Challenges in crispr/cas9 supply: potential roles of nonviral vectors. Hum Gene Ther. 2015;26:452–62.
Mintzer MA, Simanek EE. Nonviral vectors for gene supply. Chem Rev. 2009;109:259–302.
Pack DW, Hoffman AS, Pun S, Stayton PS. Design and growth of polymers for gene supply. Nat Rev Drug Discov. 2005;4:581–93.
Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, et al. Nano based mostly drug supply methods: current developments and future prospects. J Nanobiotechnology. 2018;16:71.
Klochkov SG, Neganova ME, Nikolenko VN, Chen Okay, Somasundaram SG, Kirkland CE, et al. Implications of nanotechnology for the therapy of most cancers: current advances. Semin Most cancers Biol. 2021;69:190–9.
Rajasekaran D, Srivastava J, Ebeid Okay, Gredler R, Akiel M, Jariwala N, et al. Mixture of nanoparticle-delivered sirna for astrocyte elevated gene-1 (aeg-1) and all-trans retinoic acid (atra): An efficient therapeutic technique for hepatocellular carcinoma (hcc). Bioconjug Chem. 2015;26:1651–61.
Liang Y, Iqbal Z, Wang J, Xu L, Xu X, Ouyang Okay, et al. Cell-derived extracellular vesicles for crispr/cas9 supply: engineering methods for cargo packaging and loading. Biomater Sci. 2022;10:4095–106.
Ebeid Okay, Meng X, Thiel KW, Do AV, Geary SM, Morris AS, et al. Synthetically deadly nanoparticles for therapy of endometrial most cancers. Nat Nanotechnol. 2018;13:72–81.
Gunawan C, Lim M, Marquis CP, Amal R. Nanoparticle-protein corona complexes govern the organic fates and features of nanoparticles. J Mater Chem B. 2014;2:2060–83.
Pan L, He Q, Liu J, Chen Y, Ma M, Zhang L, et al. Nuclear-targeted drug supply of tat peptide-conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc. 2012;134:5722–5.
Degors IMS, Wang C, Rehman ZU, Zuhorn IS. Carriers break obstacles in drug supply: endocytosis and endosomal escape of gene supply vectors. Acc Chem Res. 2019;52:1750–60.
Yaron PN, Holt BD, Quick PA, Losche M, Islam MF, Dahl KN. Single wall carbon nanotubes enter cells by endocytosis and never membrane penetration. J Nanobiotechnology. 2011;9:45.
Rouet R, Thuma BA, Roy MD, Lintner NG, Rubitski DM, Finley JE, et al. Receptor-mediated supply of crispr-cas9 endonuclease for cell-type-specific gene modifying. J Am Chem Soc. 2018;140:6596–603.
Blanco E, Shen H, Ferrari M. Rules of nanoparticle design for overcoming organic obstacles to drug supply. Nat Biotechnol. 2015;33:941–51.
Donahue ND, Acar H, Wilhelm S. Ideas of nanoparticle mobile uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev. 2019;143:68–96.
De Sousa Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to enhance concentrating on methods in nanomedicine. Chem Soc Rev. 2021;50:5397–434.
Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, et al. Mobile uptake of nanoparticles: journey contained in the cell. Chem Soc Rev. 2017;46:4218–44.
Khalil IA, Kogure Okay, Futaki S, Hama S, Akita H, Ueno M, et al. Octaarginine-modified multifunctional envelope-type nanoparticles for gene supply. Gene Ther. 2007;14:682–9.
Xu S, Olenyuk BZ, Okamoto CT, Hamm-Alvarez SF. Focusing on receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Adv Drug Deliv Rev. 2013;65:121–38.
Gilleron J, Querbes W, Zeigerer A, Borodovsky A, Marsico G, Schubert U, et al. Picture-based evaluation of lipid nanoparticle-mediated sirna supply, intracellular trafficking and endosomal escape. Nat Biotechnol. 2013;31:638–46.
Sahay G, Querbes W, Alabi C, Eltoukhy A, Sarkar S, Zurenko C, et al. Effectivity of sirna supply by lipid nanoparticles is restricted by endocytic recycling. Nat Biotechnol. 2013;31:653–8.
Pei D. How do biomolecules cross the cell membrane? Acc Chem Res. 2022;55:309–18.
Varkouhi AK, Scholte M, Storm G, Haisma HJ. Endosomal escape pathways for supply of biologicals. J Management Launch. 2011;151:220–8.
Wojnilowicz M, Glab A, Bertucci A, Caruso F, Cavalieri F. Tremendous-resolution imaging of proton sponge-triggered rupture of endosomes and cytosolic launch of small interfering rna. ACS Nano. 2019;13:187–202.
Yuba E, Kanda Y, Yoshizaki Y, Teranishi R, Harada A, Sugiura Okay, et al. Ph-sensitive polymer-liposome-based antigen supply methods potentiated with interferon-gamma gene lipoplex for environment friendly most cancers immunotherapy. Biomaterials. 2015;67:214–24.
Akita H, Kudo A, Minoura A, Yamaguti M, Khalil IA, Moriguchi R, et al. Multi-layered nanoparticles for penetrating the endosome and nuclear membrane by way of a step-wise membrane fusion course of. Biomaterials. 2009;30:2940–9.
Hu Y, Litwin T, Nagaraja AR, Kwong B, Katz J, Watson N, et al. Cytosolic supply of membrane-impermeable molecules in dendritic cells utilizing ph-responsive core-shell nanoparticles. Nano Lett. 2007;7:3056–64.
Manganiello MJ, Cheng C, Convertine AJ, Bryers JD, Stayton PS. Diblock copolymers with tunable ph transitions for gene supply. Biomaterials. 2012;33:2301–9.
Semple SC, Akinc A, Chen J, Sandhu AP, Mui BL, Cho CK, et al. Rational design of cationic lipids for sirna supply. Nat Biotechnol. 2010;28:172–6.
Nakase I, Kobayashi S, Futaki S. Endosome-disruptive peptides for enhancing cytosolic supply of bioactive macromolecules. Biopolymers. 2010;94:763–70.
Yang J, Bahreman A, Daudey G, Bussmann J, Olsthoorn RC, Kros A. Drug supply by way of cell membrane fusion utilizing lipopeptide modified liposomes. ACS Cent Sci. 2016;2:621–30.
Selby LI, Cortez-Jugo CM, Such G, Such G, Johnston APR. Nanoescapology: Progress towards understanding the endosomal escape of polymeric nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9:e1452.
Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug supply. Nat Mater. 2013;12:991–1003.
Massignani M, Lopresti C, Blanazs A, Madsen J, Armes SP, Lewis AL, et al. Controlling mobile uptake by floor chemistry, dimension, and floor topology on the nanoscale. Small. 2009;5:2424–32.
Su X, Fricke J, Kavanagh DG, Irvine DJ. In vitro and in vivo mrna supply utilizing lipid-enveloped ph-responsive polymer nanoparticles. Mol Pharm. 2011;8:774–87.
Wu H, Zhu L, Torchilin VP. Ph-sensitive poly(histidine)-peg/dspe-peg co-polymer micelles for cytosolic drug supply. Biomaterials. 2013;34:1213–22.
Zhao ZX, Gao SY, Wang JC, Chen CJ, Zhao EY, Hou WJ, et al. Self-assembly nanomicelles based mostly on cationic mpeg-pla-b-polyarginine(r15) triblock copolymer for sirna supply. Biomaterials. 2012;33:6793–807.
Dimitrov DS. Virus entry: Molecular mechanisms and biomedical purposes. Nat Rev Microbiol. 2004;2:109–22.
Givens BE, Naguib YW, Geary SM, Devor EJ, Salem AK. Nanoparticle-based supply of crispr/cas9 genome-editing therapeutics. AAPS J. 2018;20:108.
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering utilizing the crispr-cas9 system. Nat Protoc. 2013;8:2281–308.
Shalem O, Sanjana NE, Zhang F. Excessive-throughput practical genomics utilizing crispr-cas9. Nat Rev Genet. 2015;16:299–311.
Zuckermann M, Hovestadt V, Knobbe-Thomsen CB, Zapatka M, Northcott PA, Schramm Okay, et al. Somatic crispr/cas9-mediated tumour suppressor disruption permits versatile mind tumour modelling. Nat Commun. 2015;6:7391.
Mali P, Yang L, Esvelt KM, Aach J, Guell M, Dicarlo JE, et al. Rna-guided human genome engineering by way of cas9. Science. 2013;339:823–6.
Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, et al. In vivo genome modifying utilizing staphylococcus aureus cas9. Nature. 2015;520:186–91.
Chen S, Sanjana NE, Zheng Okay, Shalem O, Lee Okay, Shi X, et al. Genome-wide crispr display screen in a mouse mannequin of tumor progress and metastasis. Cell. 2015;160:1246–60.
Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L, et al. Environment friendly genome modification by crispr-cas9 nickase with minimal off-target results. Nat Strategies. 2014;11:399–402.
Chang N, Solar C, Gao L, Zhu D, Xu X, Zhu X, et al. Genome modifying with rna-guided cas9 nuclease in zebrafish embryos. Cell Res. 2013;23:465–72.
Shen B, Zhang J, Wu H, Wang J, Ma Okay, Li Z, et al. Technology of gene-modified mice by way of cas9/rna-mediated gene concentrating on. Cell Res. 2013;23:720–3.
Liang X, Potter J, Kumar S, Zou Y, Quintanilla R, Sridharan M, et al. Speedy and extremely environment friendly mammalian cell engineering by way of cas9 protein transfection. J Biotechnol. 2015;208:44–53.
Kim S, Kim D, Cho SW, Kim J, Kim JS. Extremely environment friendly rna-guided genome modifying in human cells by way of supply of purified cas9 ribonucleoproteins. Genome Res. 2014;24:1012–9.
Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, et al. Chemically modified information rnas improve crispr-cas genome modifying in human major cells. Nat Biotechnol. 2015;33:985–9.
Woo JW, Kim J, Kwon SI, Corvalan C, Cho SW, Kim H, et al. DNA-free genome modifying in vegetation with preassembled crispr-cas9 ribonucleoproteins. Nat Biotechnol. 2015;33:1162–4.
Crudele JM, Chamberlain JS. Cas9 immunity creates challenges for crispr gene modifying therapies. Nat Commun. 2018;9:3497.
Zhang S, Shen J, Li D, Cheng Y. Methods within the supply of cas9 ribonucleoprotein for crispr/cas9 genome modifying. Theranostics. 2021;11:614–48.
Lee B, Lee Okay, Panda S, Gonzales-Rojas R, Chong A, Bugay V, et al. Nanoparticle supply of crispr into the mind rescues a mouse mannequin of fragile x syndrome from exaggerated repetitive behaviours. Nat Biomed Eng. 2018;2:497–507.
Wei T, Cheng Q, Farbiak L, Anderson DG, Langer R, Siegwart DJ. Supply of tissue-targeted scalpels: Alternatives and challenges for in vivo crispr/cas-based genome modifying. ACS Nano. 2020;14:9243–62.
Wei T, Cheng Q, Min YL, Olson EN, Siegwart DJ. Systemic nanoparticle supply of crispr-cas9 ribonucleoproteins for efficient tissue particular genome modifying. Nat Commun. 2020;11:3232.
Riley RS, June CH, Langer R, Mitchell MJ. Supply applied sciences for most cancers immunotherapy. Nat Rev Drug Discov. 2019;18:175–96.
Han JP, Kim M, Choi BS, Lee JH, Lee GS, Jeong M, et al. In vivo supply of crispr-cas9 utilizing lipid nanoparticles permits antithrombin gene modifying for sustainable hemophilia a and b remedy. Sci Adv. 2022;8:6901.
Miao L, Zhang Y, Huang L. Mrna vaccine for most cancers immunotherapy. Mol Most cancers. 2021;20:41.
Cheng X, Lee RJ. The position of helper lipids in lipid nanoparticles (lnps) designed for oligonucleotide supply. Adv Drug Deliv Rev. 2016;99:129–37.
Kowalski PS, Rudra A, Miao L, Anderson DG. Delivering the messenger: advances in applied sciences for therapeutic mrna supply. Mol Ther. 2019;27:710–28.
Liu Q, Chen F, Hou L, Shen L, Zhang X, Wang D, et al. Nanocarrier-mediated chemo-immunotherapy arrested most cancers development and induced tumor dormancy in desmoplastic melanoma. ACS Nano. 2018;12:7812–25.
Akinc A, Querbes W, De S, Qin J, Frank-Kamenetsky M, Jayaprakash KN, et al. Focused supply of rnai therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther. 2010;18:1357–64.
Fenton OS, Olafson KN, Pillai PS, Mitchell MJ, Langer R. Advances in biomaterials for drug supply. Adv Mater. 2018;20:e1705328.
Fonseca-Santos B, Gremiao MP, Chorilli M. Nanotechnology-based drug supply methods for the therapy of alzheimer’s illness. Int J Nanomedicine. 2015;10:4981–5003.
Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug supply. Entrance Pharmacol. 2015;6:286.
Gillmore JD, Gane E, Taubel J, Kao J, Fontana M, Maitland ML, et al. Crispr-cas9 in vivo gene modifying for transthyretin amyloidosis. N Engl J Med. 2021;385:493–502.
Qiu M, Glass Z, Chen J, Haas M, Jin X, Zhao X, et al. Lipid nanoparticle-mediated codelivery of cas9 mrna and single-guide rna achieves liver-specific in vivo genome modifying of angptl3. Proc Natl Acad Sci USA. 2021;118:e2020401118.
Akinc A, Maier MA, Manoharan M, Fitzgerald Okay, Jayaraman M, Barros S, et al. The onpattro story and the scientific translation of nanomedicines containing nucleic acid-based medicine. Nat Nanotechnol. 2019;14:1084–7.
Bottger R, Pauli G, Chao PH, Al Fayez N, Hohenwarter L, Li SD. Lipid-based nanoparticle applied sciences for liver concentrating on. Adv Drug Deliv Rev. 2020;154–155:79–101.
Kenjo E, Hozumi H, Makita Y, Iwabuchi KA, Fujimoto N, Matsumoto S, et al. Low immunogenicity of lnp permits repeated administrations of crispr-cas9 mrna into skeletal muscle in mice. Nat Commun. 2021;12:7101.
Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ. Selective organ concentrating on (kind) nanoparticles for tissue-specific mrna supply and crispr-cas gene modifying. Nat Nanotechnol. 2020;15:313–20.
Cui Z, Zeng C, Huang F, Yuan F, Yan J, Zhao Y, et al. Cas13d knockdown of lung protease ctsl prevents and treats sars-cov-2 an infection. Nat Chem Biol. 2022;18:1056–64.
Lin S, Staahl BT, Alla RK, Doudna JA. Enhanced homology-directed human genome engineering by managed timing of crispr/cas9 supply. Elife. 2014;3: e04766.
Zou L, Chen F, Bao J, Wang S, Wang L, Chen M, et al. Preparation, characterization, and anticancer efficacy of evodiamine-loaded plga nanoparticles. Drug Deliv. 2016;23:908–16.
Wang Y, Ma B, Abdeen AA, Chen G, Xie R, Saha Okay, et al. Versatile redox-responsive polyplexes for the supply of plasmid DNA, messenger rna, and crispr-cas9 genome-editing equipment. ACS Appl Mater Interfaces. 2018;10:31915–27.
Chen F, Zhang J, Wang L, Wang Y, Chen M. Tumor ph(e)-triggered charge-reversal and redox-responsive nanoparticles for docetaxel supply in hepatocellular carcinoma therapy. Nanoscale. 2015;7:15763–79.
Ryu N, Kim MA, Park D, Lee B, Kim YR, Kim KH, et al. Efficient pei-mediated supply of crispr-cas9 complicated for focused gene remedy. Nanomedicine. 2018;14:2095–102.
Liu Y, Cao ZT, Xu CF, Lu ZD, Luo YL, Wang J. Optimization of lipid-assisted nanoparticle for disturbing neutrophils-related irritation. Biomaterials. 2018;172:92–104.
Luo YL, Xu CF, Li HJ, Cao ZT, Liu J, Wang JL, et al. Macrophage-specific in vivo gene modifying utilizing cationic lipid-assisted polymeric nanoparticles. ACS Nano. 2018;12:994–1005.
Zhang Y, Shen S, Zhao G, Xu CF, Zhang HB, Luo YL, et al. In situ repurposing of dendritic cells with crispr/cas9-based nanomedicine to induce transplant tolerance. Biomaterials. 2019;217: 119302.
Zhang X, Jin H, Huang X, Chaurasiya B, Dong D, Shanley TP, et al. Strong genome modifying in grownup vascular endothelium by nanoparticle supply of crispr-cas9 plasmid DNA. Cell Rep. 2022;38: 110196.
Liu Q, Zhao Okay, Wang C, Zhang Z, Zheng C, Zhao Y, et al. Multistage supply nanoparticle facilitates environment friendly crispr/dcas9 activation and tumor progress suppression in vivo. Adv Sci. 2019;6:1801423.
Li Q, Lv X, Tang C, Yin C. Co-delivery of doxorubicin and crispr/cas9 or rnai-expressing plasmid by chitosan-based nanoparticle for most cancers remedy. Carbohydr Polym. 2022;287: 119315.
Wan T, Pan Q, Ping Y. Microneedle-assisted genome modifying: a transdermal technique of concentrating on nlrp3 by crispr-cas9 for synergistic remedy of inflammatory pores and skin problems. Sci Adv. 2021;7:eabe2888.
Farbiak L, Cheng Q, Wei T, Alvarez-Benedicto E, Johnson LT, Lee S, et al. All-in-one dendrimer-based lipid nanoparticles allow exact hdr-mediated gene modifying in vivo. Adv Mater. 2021;33: e2006619.
Park J, Fong PM, Lu J, Russell KS, Sales space CJ, Saltzman WM, et al. Pegylated plga nanoparticles for the improved supply of doxorubicin. Nanomedicine. 2009;5:410–8.
Faure AC, Dufort S, Josserand V, Perriat P, Coll JL, Roux S, et al. Management of the in vivo biodistribution of hybrid nanoparticles with completely different poly(ethylene glycol) coatings. Small. 2009;5:2565–75.
Rao NV, Ko H, Lee J, Park JH. Latest progress and advances in stimuli-responsive polymers for most cancers remedy. Entrance Bioeng Biotechnol. 2018;6:110.
Wang S, Liu Q, Li L, City MW. Latest advances in stimuli-responsive commodity polymers. Macromol Speedy Commun. 2021;42: e2100054.
Li L, Yang Z, Zhu S, He L, Fan W, Tang W, et al. A rationally designed semiconducting polymer brush for nir-ii imaging-guided light-triggered distant management of crispr/cas9 genome modifying. Adv Mater. 2019;31: e1901187.
Xie R, Wang X, Wang Y, Ye M, Zhao Y, Yandell BS, et al. Ph-responsive polymer nanoparticles for environment friendly supply of cas9 ribonucleoprotein with or with out donor DNA. Adv Mater. 2022;34: e2110618.
Luther DC, Huang R, Jeon T, Zhang X, Lee YW, Nagaraj H, et al. Supply of medicine, proteins, and nucleic acids utilizing inorganic nanoparticles. Adv Drug Deliv Rev. 2020;156:188–213.
Goddard ZR, Marin MJ, Russell DA, Searcey M. Energetic concentrating on of gold nanoparticles as most cancers therapeutics. Chem Soc Rev. 2020;49:8774–89.
Nihongaki Y, Kawano F, Nakajima T, Sato M. Photoactivatable crispr-cas9 for optogenetic genome modifying. Nat Biotechnol. 2015;33:755–60.
Wirth J, Garwe F, Meyer R, Csaki A, Stranik O, Fritzsche W. Plasmonically enhanced electron escape from gold nanoparticles and their polarization-dependent excitation switch alongside DNA nanowires. Nano Lett. 2014;14:3809–16.
Zhang Z, Wang L, Wang J, Jiang X, Li X, Hu Z, et al. Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for most cancers therapy. Adv Mater. 2012;24:1418–23.
Chen X, Chen Y, Xin H, Wan T, Ping Y. Close to-infrared optogenetic engineering of photothermal nanocrispr for programmable genome modifying. Proc Natl Acad Sci USA. 2020;117:2395–405.
Peng H, Le C, Wu J, Li XF, Zhang H, Le XC. A genome-editing nanomachine constructed with a clustered recurrently interspaced quick palindromic repeats system and activated by near-infrared illumination. ACS Nano. 2020;14:2817–26.
Huang L, Zhou M, Abbas G, Li C, Cui M, Zhang XE, et al. A most cancers cell membrane-derived biomimetic nanocarrier for synergistic photothermal/gene remedy by environment friendly supply of crispr/cas9 and gold nanorods. Adv Healthc Mater. 2022;11: e2201038.
Ma L, Yin L, Li X, Chen S, Peng L, Liu G, et al. A smartphone-based visible biosensor for crispr-cas powered sars-cov-2 diagnostics. Biosens Bioelectron. 2022;195: 113646.
Lopez-Valls M, Escalona-Noguero C, Rodriguez-Diaz C, Pardo D, Castellanos M, Milan-Rois P, et al. Cascade: Bare eye-detection of sars-cov-2 utilizing cas13a and gold nanoparticles. Anal Chim Acta. 2022;1205: 339749.
Zhang WS, Pan J, Li F, Zhu M, Xu M, Zhu H, et al. Reverse transcription recombinase polymerase amplification coupled with crispr-cas12a for facile and extremely delicate colorimetric sars-cov-2 detection. Anal Chem. 2021;93:4126–33.
Fan M, Han Y, Gao S, Yan H, Cao L, Li Z, et al. Ultrasmall gold nanoparticles in most cancers prognosis and remedy. Theranostics. 2020;10:4944–57.
Zhang P, Guo Z, Ullah S, Melagraki G, Afantitis A, Lynch I. Nanotechnology and synthetic intelligence to allow sustainable and precision agriculture. Nat Crops. 2021;7:864–76.
Wu D, Zhou J, Creyer MN, Yim W, Chen Z, Messersmith PB, et al. Phenolic-enabled nanotechnology: Versatile particle engineering for biomedicine. Chem Soc Rev. 2021;50:4432–83.
Mousavi SM, Hashemi SA, Ghasemi Y, Atapour A, Amani AM, Savar Dashtaki A, et al. Inexperienced synthesis of silver nanoparticles towards bio and medical purposes: evaluation research. Artif Cells Nanomed Biotechnol. 2018;46:S855–72.
Zhang D, Ma XL, Gu Y, Huang H, Zhang GW. Inexperienced synthesis of metallic nanoparticles and their potential purposes to deal with most cancers. Entrance Chem. 2020;8:799.
Alnadhari S, Al-Enazi NM, Alshehrei F, Ameen F. A evaluation on biogenic synthesis of metallic nanoparticles utilizing marine algae and its purposes. Environ Res. 2021;194: 110672.
Fawcett D, Verduin JJ, Shah M, Sharma SB, Poinern GEJ. A evaluation of present analysis into the biogenic synthesis of metallic and metallic oxide nanoparticles by way of marine algae and seagrasses. J Nanosci. 2017;2017:8013850.
Jacob JM, Ravindran R, Narayanan M, Samuel SM, Pugazhendhi A, Kumar G. Microalgae: a potential low price inexperienced different for nanoparticle synthesis. Curr Opin Environ Sci Well being. 2021;20: 100163.
Pal S, Tak YK, Track JM. Does the antibacterial exercise of silver nanoparticles rely upon the form of the nanoparticle? A research of the gram-negative bacterium escherichia coli. Appl Environ Microbiol. 2007;73:1712–20.
Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, et al. “Inexperienced” nanotechnologies: Synthesis of metallic nanoparticles utilizing vegetation. Acta Naturae. 2014;6:35–44.
Tran TV, Nguyen DTC, Kumar PS, Din ATM, Jalil AA, Vo DN. Inexperienced synthesis of zro2 nanoparticles and nanocomposites for biomedical and environmental purposes: a evaluation. Environ Chem Lett. 2022;20:1309–31.
Mohd Yusof H, Mohamad R, Zaidan UH, Abdul Rahman NA. Microbial synthesis of zinc oxide nanoparticles and their potential software as an antimicrobial agent and a feed complement in animal trade: a evaluation. J Anim Sci Biotechnol. 2019;10:57.
Hulkoti NI, Taranath TC. Biosynthesis of nanoparticles utilizing microbes-a evaluation. Colloids Surf B Biointerfaces. 2014;121:474–83.
Dahoumane SA, Mechouet M, Wijesekera Okay, Filipe CDM, Sicard C, Bazylinski DA, et al. Algae-mediated biosynthesis of inorganic nanomaterials as a promising route in nanobiotechnology-a evaluation. Inexperienced Chem. 2017;19:552–87.
Rahman A, Kumar S, Bafana A, Lin J, Dahoumane SA, Jeffryes C. A mechanistic view of the light-induced synthesis of silver nanoparticles utilizing extracellular polymeric substances of chlamydomonas reinhardtii. Molecules. 2019;24:3506.
Zhang ZW, Chen J, Yang QL, Lan Okay, Yan ZY, Chen JQ. Eco-friendly intracellular microalgae synthesis of fluorescent cdse qds as a delicate nanoprobe for willpower of imatinib. Sensor Actuat B-Chem. 2018;263:625–33.
Gahlawat G, Choudhury AR. A evaluation on the biosynthesis of metallic and metallic salt nanoparticles by microbes. RSC Adv. 2019;9:12944–67.
Patil MP, Kim GD. Marine microorganisms for synthesis of metallic nanoparticles and their biomedical purposes. Colloids Surf B Biointerfaces. 2018;172:487–95.
Sharma A, Sharma S, Sharma Okay, Chetri SPK, Vashishtha A, Singh P, et al. Algae as essential organisms in advancing nanotechnology: a scientific evaluation. J Appl Phycol. 2016;28:1759–74.
Prasad TNVKV, Kambala VSR, Naidu R. Phyconanotechnology: synthesis of silver nanoparticles utilizing brown marine algae cystophora moniliformis and their characterisation. J Appl Phycol. 2013;25:177–82.
Siddiqi KS, Husen A. Fabrication of metallic and metallic oxide nanoparticles by algae and their poisonous results. Nanoscale Res Lett. 2016;11:363.
Alijani HQ, Pourseyedi S, Torkzadeh Mahani M, Khatami M. Inexperienced synthesis of zinc sulfide (zns) nanoparticles utilizing stevia rebaudiana bertoni and analysis of its cytotoxic properties. J Mol Struct. 2019;1175:214–8.
Yun YH, Lee BK, Park Okay. Managed drug supply: Historic perspective for the following era. J Management Launch. 2015;219:2–7.
Bozzuto G, Molinari A. Liposomes as nanomedical gadgets. Int J Nanomedicine. 2015;10:975–99.
Svenson S. The dendrimer paradox–excessive medical expectations however poor scientific translation. Chem Soc Rev. 2015;44:4131–44.
Solar Y, Ma XL, Hu H. Marine polysaccharides as a flexible biomass for the development of nano drug supply methods. Mar Medication. 2021;19:345.
Chen XY, Zhao X, Gao YY, Yin JQ, Bai MY, Wang FH. Inexperienced synthesis of gold nanoparticles utilizing carrageenan oligosaccharide and their in vitro antitumor exercise. Mar Medication. 2018;16:277.
Manivasagan P, Oh J. Marine polysaccharide-based nanomaterials as a novel supply of nanobiotechnological purposes. Int J Biol Macromol. 2016;82:315–27.
Cardoso MJ, Costa RR, Mano JF. Marine origin polysaccharides in drug supply methods. Mar Medication. 2016;14:34.
Manivasagan P, Bharathiraja S, Bui NQ, Jang B, Oh YO, Lim IG, et al. Doxorubicin-loaded fucoidan capped gold nanoparticles for drug supply and photoacoustic imaging. Int J Biol Macromol. 2016;91:578–88.
Tomoaia G, Horovitz O, Mocanu A, Nita A, Avram A, Racz CP, et al. Results of doxorubicin mediated by gold nanoparticles and resveratrol in two human cervical tumor cell strains. Colloids Surf B Biointerfaces. 2015;135:726–34.
Venkatpurwar V, Shiras A, Pokharkar V. Porphyran capped gold nanoparticles as a novel provider for supply of anticancer drug: in vitro cytotoxicity research. Int J Pharm. 2011;409:314–20.
Chen X, Han W, Zhao X, Tang W, Wang F. Epirubicin-loaded marine carrageenan oligosaccharide capped gold nanoparticle system for ph-triggered anticancer drug launch. Sci Rep. 2019;9:6754.
Salem DS, Sliem MA, El-Sesy M, Shouman SA, Badr Y. Improved chemo-photothermal remedy of hepatocellular carcinoma utilizing chitosan-coated gold nanoparticles. J Photochem Photobiol B. 2018;182:92–9.
Manivasagan P, Bharathiraja S, Bui NQ, Lim IG, Oh J. Paclitaxel-loaded chitosan oligosaccharide-stabilized gold nanoparticles as novel brokers for drug supply and photoacoustic imaging of most cancers cells. Int J Pharm. 2016;511:367–79.
George A, Shah PA, Shrivastav PS. Pure biodegradable polymers based mostly nano-formulations for drug supply: a evaluation. Int J Pharm. 2019;561:244–64.
Hussein HA, Abdullah MA. Anticancer compounds derived from marine diatoms. Mar Medication. 2020;18:356.
Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug supply. Adv Mater. 2012;24:1504–34.
Uthappa UT, Brahmkhatri V, Sriram G, Jung HY, Yu J, Kurkuri N, et al. Nature engineered diatom biosilica as drug supply methods. J Management Launch. 2018;281:70–83.
Delasoie J, Zobi F. Pure diatom biosilica as microshuttles in drug supply methods. Pharmaceutics. 2019;11:537.
Aw MS, Simovic S, Yu Y, Addai-Mensah J, Losic D. Porous silica microshells from diatoms as biocarrier for drug supply purposes. Powder Technol. 2012;223:52–8.
Delasoie J, Rossier J, Haeni L, Rothen-Rutishauser B, Zobi F. Sluggish-targeted launch of a ruthenium anticancer agent from vitamin b12 functionalized marine diatom microalgae. Dalton Trans. 2018;47:17221–32.
Sasirekha R, Sheena TS, Sathiya Deepika M, Santhanam P, Townley HE, Jeganathan Okay, et al. Floor engineered amphora subtropica frustules utilizing chitosan as a drug supply platform for anticancer remedy. Mater Sci Eng C Mater Biol Appl. 2019;94:56–64.
Fu P, Zhang J, Li H, Mak M, Xu W, Tao Z. Extracellular vesicles as supply methods at nano-/micro-scale. Adv Drug Deliv Rev. 2021;179: 113910.
Paterna A, Rao E, Adamo G, Raccosta S, Picciotto S, Romancino D, et al. Isolation of extracellular vesicles from microalgae: a renewable and scalable bioprocess. Entrance Bioeng Biotechnol. 2022;10: 836747.
Adamo G, Fierli D, Romancino DP, Picciotto S, Barone ME, Aranyos A, et al. Nanoalgosomes: Introducing extracellular vesicles produced by microalgae. J Extracell Vesicles. 2021;10: e12081.
Zhang F, Zhuang J, Li Z, Gong H, De Avila BE, Duan Y, et al. Nanoparticle-modified microrobots for in vivo antibiotic supply to deal with acute bacterial pneumonia. Nat Mater. 2022;21:1324–32.
Solar L, Yu Y, Chen Z, Bian F, Ye F, Solar L, et al. Biohybrid robotics with dwelling cell actuation. Chem Soc Rev. 2020;49:4043–69.
Chen QW, Qiao JY, Liu XH, Zhang C, Zhang XZ. Personalized materials-assisted microorganisms in tumor therapeutics. Chem Soc Rev. 2021;50:12576–615.
Xin H, Zhao N, Wang Y, Zhao X, Pan T, Shi Y, et al. Optically managed dwelling micromotors for the manipulation and disruption of organic targets. Nano Lett. 2020;20:7177–85.
Dawiec-Lisniewska A, Podstawczyk D, Bastrzyk A, Czuba Okay, Pacyna-Iwanicka Okay, Okoro OV, et al. New developments in biotechnological purposes of photosynthetic microorganisms. Biotechnol Adv. 2022;59: 107988.
Zhang D, Zhong D, Ouyang J, He J, Qi Y, Chen W, et al. Microalgae-based oral microcarriers for intestine microbiota homeostasis and intestinal safety in most cancers radiotherapy. Nat Commun. 2022;13:1413.
Li M, Wu J, Lin D, Yang J, Jiao N, Wang Y, et al. A diatom-based biohybrid microrobot with a excessive drug-loading capability and ph-sensitive drug launch for goal remedy. Acta Biomater. 2022;154:443–53.
Liu L, Wu J, Chen B, Gao J, Li T, Ye Y, et al. Magnetically actuated biohybrid microswimmers for exact photothermal muscle contraction. ACS Nano. 2022;16:6515–26.
Yan X, Zhou Q, Vincent M, Deng Y, Yu J, Xu J, et al. Multifunctional biohybrid magnetite microrobots for imaging-guided remedy. Sci Robotic. 2017;2: eaaq155.
Yasa O, Erkoc P, Alapan Y, Sitti M. Microalga-powered microswimmers towards energetic cargo supply. Adv Mater. 2018;30: e1804130.
Zhong DN, Li WL, Qi YC, He J, Zhou M. Photosynthetic biohybrid nanoswimmers system to alleviate tumor hypoxia for fl/pa/mr imaging-guided enhanced radio-photodynamic synergetic remedy. Adv Funct Mater. 2020;30: 1910395.
Gong D, Celi N, Zhang D, Cai J. Magnetic biohybrid microrobot multimers based mostly on chlorella cells for enhanced focused drug supply. ACS Appl Mater Interfaces. 2022;14:6320–30.
Akolpoglu MB, Dogan NO, Bozuyuk U, Ceylan H, Kizilel S, Sitti M. Excessive-yield manufacturing of biohybrid microalgae for on-demand cargo supply. Adv Sci. 2020;7:2001256.
Shchelik IS, Molino JVD, Gademann Okay. Biohybrid microswimmers in opposition to bacterial infections. Acta Biomater. 2021;136:99–110.
Zhong D, Zhang D, Xie T, Zhou M. Biodegradable microalgae-based carriers for focused supply and imaging-guided remedy towards lung metastasis of breast most cancers. Small. 2020;16: e2000819.
Wang Y, Huang C, Zhao W. Latest advances of the organic and biomedical purposes of crispr/cas methods. Mol Biol Rep. 2022;49:7087–100.
Tan FHP, Nadir N, Sudesh Okay. Microalgal biomass as feedstock for bacterial manufacturing of pha: advances and future prospects. Entrance Bioeng Biotechnol. 2022;10: 879476.
Sreenikethanam A, Raj S, Gugulothu P, Bajhaiya AK. Genetic engineering of microalgae for secondary metabolite manufacturing: current developments, challenges, and future prospects. Entrance Bioeng Biotechnol. 2022;10: 836056.
Schmidt TJN, Berarducci B, Konstantinidou S, Raffa V. Crispr/cas9 within the period of nanomedicine and artificial biology. Drug Discov In the present day. 2023;28: 103375.
Wang D, Li Y, Hu X, Su W, Zhong M. Mixed enzymatic and mechanical cell disruption and lipid extraction of inexperienced alga neochloris oleoabundans. Int J Mol Sci. 2015;16:7707–22.
Ren X, Liu Y, Fan C, Hong H, Wu W, Zhang W, et al. Manufacturing, processing, and safety of microalgal n-3 pufa-rich oil. Meals. 2022;11:1215.
Guiheneuf F, Khan A, Tran LS. Genetic engineering: a promising instrument to engender physiological, biochemical, and molecular stress resilience in inexperienced microalgae. Entrance Plant Sci. 2016;7:400.
Liu H, Ding Y, Zhou Y, Jin W, Xie Okay, Chen LL. Crispr-p 2.0: an improved crispr-cas9 instrument for genome modifying in vegetation. Mol Plant. 2017;10:530–2.
Heigwer F, Kerr G, Boutros M. E-crisp: quick crispr goal web site identification. Nat Strategies. 2014;11:122–3.
Abby SS, Neron B, Menager H, Touchon M, Rocha EP. Macsyfinder: a program to mine genomes for molecular methods with an software to crispr-cas methods. PLoS ONE. 2014;9: e110726.
Dasgupta I, Flotte TR, Keeler AM. Crispr/cas-dependent and nuclease-free in vivo therapeutic gene modifying. Hum Gene Ther. 2021;32:275–93.
Liu M, Rehman S, Tang X, Gu Okay, Fan Q, Chen D, et al. Methodologies for enhancing hdr effectivity. Entrance Genet. 2018;9:691.
Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. Growing the effectivity of exact genome modifying with crispr-cas9 by inhibition of nonhomologous finish becoming a member of. Nat Biotechnol. 2015;33:538–42.
Paulsen BS, Mandal PK, Frock RL, Boyraz B, Yadav R, Upadhyayula S, et al. Ectopic expression of rad52 and dn53bp1 improves homology-directed restore throughout crispr-cas9 genome modifying. Nat Biomed Eng. 2017;1:878–88.
Ferrari S, Jacob A, Beretta S, Unali G, Albano L, Vavassori V, et al. Environment friendly gene modifying of human long-term hematopoietic stem cells validated by clonal monitoring. Nat Biotechnol. 2020;38:1298–308.
Renaud JB, Boix C, Charpentier M, De Cian A, Cochennec J, Duvernois-Berthet E, et al. Improved genome modifying effectivity and suppleness utilizing modified oligonucleotides with talen and crispr-cas9 nucleases. Cell Rep. 2016;14:2263–72.
Ma M, Zhuang F, Hu X, Wang B, Wen XZ, Ji JF, et al. Environment friendly era of mice carrying homozygous double-floxp alleles utilizing the cas9-avidin/biotin-donor DNA system. Cell Res. 2017;27:578–81.
Khan MI, Shin JH, Kim JD. The promising way forward for microalgae: present standing, challenges, and optimization of a sustainable and renewable trade for biofuels, feed, and different merchandise. Microb Cell Truth. 2018;17:36.
Deguchi M, Kane S, Potlakayala S, George H, Proano R, Sheri V, et al. Metabolic engineering methods of commercial hemp (hashish sativa l.): a short evaluation of the advances and challenges. Entrance Plant Sci. 2020;11:580621.
Yi Z, Xu M, Magnusdottir M, Zhang Y, Brynjolfsson S, Fu W. Photograph-oxidative stress-driven mutagenesis and adaptive evolution on the marine diatom phaeodactylum tricornutum for enhanced carotenoid accumulation. Mar Medication. 2015;13:6138–51.
Fu W, Nelson DR, Mystikou A, Daakour S, Salehi-Ashtiani Okay. Advances in microalgal analysis and engineering growth. Curr Opin Biotechnol. 2019;59:157–64.
Rosales-Mendoza S, Solis-Andrade KI, Marquez-Escobar VA, Gonzalez-Ortega O, Banuelos-Hernandez B. Present advances within the algae-made biopharmaceuticals area. Skilled Opin Biol Ther. 2020;20:751–66.
Kesik-Brodacka M. Progress in biopharmaceutical growth. Biotechnol Appl Biochem. 2018;65:306–22.
Lingg N, Zhang P, Track Z, Bardor M. The candy tooth of biopharmaceuticals: significance of recombinant protein glycosylation evaluation. Biotechnol J. 2012;7:1462–72.
Reddy KV, Yedery RD, Aranha C. Antimicrobial peptides: Premises and guarantees. Int J Antimicrob Brokers. 2004;24:536–47.
Griesbeck C, Kobl I, Heitzer M. Chlamydomonas reinhardtii: a protein expression system for pharmaceutical and biotechnological proteins. Mol Biotechnol. 2006;34:213–23.
Walmsley AM, Arntzen CJ. Crops for supply of edible vaccines. Curr Opin Biotechnol. 2000;11:126–9.
Lopez-Pacheco IY, Rodas-Zuluaga LI, Cuellar-Bermudez SP, Hidalgo-Vazquez E, Molina-Vazquez A, Araujo RG, et al. Revalorization of microalgae biomass for synergistic interplay and sustainable purposes: Bioplastic era. Mar Medication. 2022;20:601.
Marinescu M, Popa CV. Pyridine compounds with antimicrobial and antiviral actions. Int J Mol Sci. 2022;23:5659.
Lai CL, Lau JY, Wu PC, Ngan H, Chung HT, Mitchell SJ, et al. Recombinant interferon-alpha in inoperable hepatocellular carcinoma: a randomized managed trial. Hepatology. 1993;17:389–94.
Li H, Liu Q, Cui Okay, Liu J, Ren Y, Shi D. Expression of biologically energetic human interferon alpha 2b within the milk of transgenic mice. Transgenic Res. 2013;22:169–78.
Jarquin-Cordero M, Chavez MN, Centeno-Cerdas C, Bohne AV, Hopfner U, Machens HG, et al. In direction of a biotechnological platform for the manufacturing of human pro-angiogenic progress components within the inexperienced alga chlamydomonas reinhardtii. Appl Microbiol Biotechnol. 2020;104:725–39.
Centeno-Cerdas C, Jarquin-Cordero M, Chavez MN, Hopfner U, Holmes C, Schmauss D, et al. Growth of photosynthetic sutures for the native supply of oxygen and recombinant progress components in wounds. Acta Biomater. 2018;81:184–94.
Chavez MN, Schenck TL, Hopfner U, Centeno-Cerdas C, Somlai-Schweiger I, Schwarz C, et al. In direction of autotrophic tissue engineering: photosynthetic gene remedy for regeneration. Biomaterials. 2016;75:25–36.
Feng S, Feng W, Zhao L, Gu H, Li Q, Shi Okay, et al. Preparation of transgenic dunaliella salina for immunization in opposition to white spot syndrome virus in crayfish. Arch Virol. 2014;159:519–25.
Hernandez-Ramirez J, Wong-Arce A, Gonzalez-Ortega O, Rosales-Mendoza S. Expression in algae of a chimeric protein carrying a number of epitopes from tumor related antigens. Int J Biol Macromol. 2020;147:46–52.
Chia WY, Kok H, Chew KW, Low SS, Present PL. Can algae contribute to the struggle with covid-19? Bioengineered. 2021;12:1226–37.
Aurisicchio L, Peruzzi D, Koo G, Wei WZ, La Monica N, Ciliberto G. Immunogenicity and therapeutic efficacy of a dual-component genetic most cancers vaccine cotargeting carcinoembryonic antigen and her2/neu in preclinical fashions. Hum Gene Ther. 2014;25:121–31.
Kufe DW. Muc1-c oncoprotein as a goal in breast most cancers: activation of signaling pathways and therapeutic approaches. Oncogene. 2013;32:1073–81.
Rafiq S, Purdon TJ, Daniyan AF, Koneru M, Dao T, Liu C, et al. Optimized t-cell receptor-mimic chimeric antigen receptor t cells directed towards the intracellular wilms tumor 1 antigen. Leukemia. 2017;31:1788–97.
Soysal SD, Muenst S, Kan-Mitchell J, Huarte E, Zhang X, Wilkinson-Ryan I, et al. Identification and translational validation of novel mammaglobin-a cd8 t cell epitopes. Breast Most cancers Res Deal with. 2014;147:527–37.
Lin TW, Huang PH, Liao BH, Chao TL, Tsai YM, Chang SC, et al. Tag-free sars-cov-2 receptor binding area (rbd), however not c-terminal tagged sars-cov-2 rbd, induces a speedy and potent neutralizing antibody response. Vaccines. 2022;10:1839.
Georgianna DR, Mayfield SP. Exploiting variety and artificial biology for the manufacturing of algal biofuels. Nature. 2012;488:329–35.
Gilmour DJ. Microalgae for biofuel manufacturing. Adv Appl Microbiol. 2019;109:1–30.
Wen X, Du Okay, Wang Z, Peng X, Luo L, Tao H, et al. Efficient cultivation of microalgae for biofuel manufacturing: a pilot-scale analysis of a novel oleaginous microalga graesiella sp. Wbg-1. Biotechnol Biofuels. 2016;9:123.
Blatti JL, Beld J, Behnke CA, Mendez M, Mayfield SP, Burkart MD. Manipulating fatty acid biosynthesis in microalgae for biofuel by protein-protein interactions. PLoS ONE. 2012;7: e42949.
Frleta R, Popovic M, Smital T, Simat V. Comparability of progress and chemical profile of diatom skeletonema grevillei in bioreactor and incubation-shaking cupboard in two progress phases. Mar Medication. 2022;20:697.
Ward VCA, Rehmann L. Quick media optimization for mixotrophic cultivation of chlorella vulgaris. Sci Rep. 2019;9:19262.
Luo L, Ren H, Pei X, Xie G, Xing D, Dai Y, et al. Simultaneous vitamin elimination and high-efficiency biomass and lipid accumulation by microalgae utilizing anaerobic digested effluent from cattle manure mixed with municipal wastewater. Biotechnol Biofuels. 2019;12:218.
Goodman JM, Boone-Heinonen J, Richardson DM, Andrea SB, Messer LC. Analyzing insurance policies by a dohad lens: What can we be taught? Int J Environ Res Public Well being. 2018;15:2906.
Andrade-Guel M, Cabello-Alvarado C, Bartolo-Perez P, Medellin-Banda DI, Avila-Orta CA, Cruz-Ortiz B, et al. Floor modification of tio(2)/zno nanoparticles by natural acids with enhanced methylene blue and rhodamine b dye adsorption properties. RSC Adv. 2022;12:28494–504.
Forootanfar H, Rezaei S, Zeinvand-Lorestani H, Tahmasbi H, Mogharabi M, Ameri A, et al. Research on the laccase-mediated decolorization, kinetic, and microtoxicity of some artificial azo dyes. J Environ Well being Sci Eng. 2016;14:7.
Srivastava A, Website positioning SH, Ko SR, Ahn CY, Oh HM. Bioflocculation in pure and engineered methods: Present views. Crit Rev Biotechnol. 2018;38:1176–94.
Savchenko O, Xing J, Yang X, Gu Q, Shaheen M, Huang M, et al. Algal cell response to pulsed waved stimulation and its software to extend algal lipid manufacturing. Sci Rep. 2017;7:42003.
Fuchs T, Arnold ND, Garbe D, Deimel S, Lorenzen J, Masri M, et al. A newly designed mechanically managed, sterilizable flat panel photobioreactor for axenic algae tradition. Entrance Bioeng Biotechnol. 2021;9: 697354.
Ranjbar S, Malcata FX. Is genetic engineering a route to boost microalgae-mediated bioremediation of heavy metal-containing effluents? Molecules. 2022;27:1473.
Goveas LC, Nayak S, Vinayagam R, Loke Present P, Selvaraj R. Microalgal remediation and valorisation of polluted wastewaters for zero-carbon round bioeconomy. Bioresour Technol. 2022;365: 128169.
Gondi R, Kavitha S, Yukesh Kannah R, Parthiba Karthikeyan O, Kumar G, Kumar Tyagi V, et al. Algal-based system for elimination of rising pollution from wastewater: a evaluation. Bioresour Technol. 2022;344: 126245.
Ravutsov M, Mitrev Y, Shestakova P, Lazarova H, Simeonov S, Popova M. Co(2) adsorption on modified mesoporous silicas: the position of the adsorption websites. Nanomaterials. 2021;11:2831.
Rekker S, Ives MC, Wade B, Webb L, Greig C. Measuring company paris compliance utilizing a strict science-based strategy. Nat Commun. 2022;13:4441.
Chen Y, Xu C, Vaidyanathan S. Microalgae: a strong “inexperienced bio-bridge” between power and setting. Crit Rev Biotechnol. 2018;38:351–68.
Cheah WY, Present PL, Chang JS, Ling TC, Juan JC. Biosequestration of atmospheric co2 and flue gas-containing co2 by microalgae. Bioresour Technol. 2015;184:190–201.
Li L, Huang J, Almutairi AW, Lan X, Zheng L, Lin Y, et al. Built-in strategy for enhanced bio-oil restoration from disposed face masks by co-hydrothermal liquefaction with spirulina platensis grown in wastewater. Biomass Convers Biorefin. 2021;25:1–12.
Solovchenko AKhozin-Goldberg I. Excessive-co2 tolerance in microalgae: potential mechanisms and implications for biotechnology and bioremediation. Biotechnol Lett. 2013;35:1745–52.
Choi KR, Jang WD, Yang D, Cho JS, Park D, Lee SY. Techniques metabolic engineering methods: Integrating methods and artificial biology with metabolic engineering. Tendencies Biotechnol. 2019;37:817–37.
[ad_2]